A specific phosphorylation regulates the protective role of αA-crystallin in diabetes.
نویسندگان
چکیده
Neurodegeneration is a central aspect of the early stages of diabetic retinopathy, the primary ocular complication associated with diabetes. While progress has been made to improve the vascular perturbations associated with diabetic retinopathy, there are still no treatment options to counteract the neuroretinal degeneration associated with diabetes. Our previous work suggested that the molecular chaperones α-crystallins could be involved in the pathophysiology of diabetic retinopathy; however, the role and regulation of α-crystallins remained unknown. In the present study, we demonstrated the neuroprotective role of αA-crystallin during diabetes and its regulation by its phosphorylation on residue 148. We further characterized the dual role of αA-crystallin in neurons and glia, its essential role for neuronal survival, and its direct dependence on phosphorylation on this residue. These findings support further evaluation of αA-crystallin as a treatment option to promote neuron survival in diabetic retinopathy and neurodegenerative diseases in general.
منابع مشابه
The small heat shock protein αA-crystallin negatively regulates pancreatic tumorigenesis
Our recent study has shown that αA-crystallin appears to act as a tumor suppressor in pancreas. Here, we analyzed expression patterns of αA-crystallin in the pancreatic tumor tissue and the neighbor normal tissue from 74 pancreatic cancer patients and also pancreatic cancer cell lines. Immunocytochemistry revealed that αA-crystallin was highly expressed in the normal tissue from 56 patients, bu...
متن کاملIncreased expression of αA-crystallin in human diabetic eye.
We recently demonstrated that αA-crystallin, a molecular chaperone, protected photoreceptors from apoptotic signals in intraocular inflammation. Advanced glycation end product (AGE) plays an important role in the progression of diabetic retinopathy. The aim of this study was to examine the expression of α-crystallins and apoptosis in human diabetic retina, and to analyze α-crystallin up-regulat...
متن کاملDiabetes Reduces Phosphorylation in Human Retina of αA-crystallin on T148, a Site Regulating its Protective Function in Neurons and Glia
These abstracts are licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International License. Go to http://iovs.arvojournals.org/ to access the versions of record. 506 Diabetic Retinopathy: Neurodegeneration and pathology associated with the neurovascular unit. Thursday, May 11, 2017 8:30 AM–10:15 AM Exhibit/Poster Hall Poster Session Program #/Board # Range: 5189–52...
متن کاملThe Transcription Factor Pax6 Regulates Survival of Dopaminergic Olfactory Bulb Neurons via Crystallin αA
Most neurons in the adult mammalian brain survive for the entire life of an individual. However, it is not known which transcriptional pathways regulate this survival in a healthy brain. Here, we identify a pathway regulating neuronal survival in a highly subtype-specific manner. We show that the transcription factor Pax6 expressed in dopaminergic neurons of the olfactory bulb regulates the sur...
متن کاملOligomerization with wt αA- and αB-crystallins reduces proteasome-mediated degradation of C-terminally truncated αA-crystallin.
PURPOSE We previously demonstrated that the ubiquitin-proteasome pathway (UPP) is a general protein quality control system that selectively degrades damaged or abnormal lens proteins, including C-terminally truncated αA-crystallin. The objective of this work was to determine the effects of wt αA- and αB-crystallins on the degradation of C-terminally truncated αA-crystallin (αA(1-162)) and vice ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCI insight
دوره 3 4 شماره
صفحات -
تاریخ انتشار 2018